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Automated adaptive recursive control of unstable orbits in high-dimensional chaotic systems
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We develop and demonstrate an automated control strategy using an adaptive learning algorithm that can
control and track periodic orbits even if they are completely unstable, i.e., have no stable manifolds. The
control system is designed to operate in real time, taking time series measurements of a single variable as input
and providing as output the control parameter value required to stabilize the desired unstable periodic orbit
(UPO). The control scheme directs the system to the fixed point itself rather than a stable manifold and works
when the the unstable Lyapunov multipliers are relatively larg€). The learning and control algorithm uses
a time delay embedding with the full state vector collected within one period of the controlled orbit. Control is
achieved by small perturbations of a single control parameter once each cycle using a control algorithm with
one recursive term. A simulation is used to study the application of the control algorithm to the hyperchaotic
Rossler system. The simulation demonstrates both control of a highly unstable UPO and tracking the UPO as
system parameters slowly drift over a wide range. The difficulties encountered in tracking with recursive
control are discusseiS1063-651X96)14911-4

PACS numbd(s): 05.45+b, 87.10+e

[. INTRODUCTION one unstable direction. The use of delay coordinates leads to
recursive control equations, i.e., the control used during the
Perhaps one of the most promising applications of thenext cycle depends not only on the deviation of the system
recent advances in nonlinear dynamics is in the area of sysrom the desired fixed point in state space but also on the
tem control. Nonlinear dissipative systems typically possessontrol parameter deviations used on one or more previous
dynamics that have a sensitive dependence on initial condeycles. Building on this work, Dinget al. [7] developed a
tions. These systems settle into a deterministic ergodic warlkigh-dimensional control method designed for relatively
dering motion on a chaotic attractor in state space and theasy experimental implementation and applied it to control a
attractor usually has an infinite set of unstable periodic orbitslriven magnetoelastic ribbon with one moderately unstable
(UPOs embedded within it. A small change in a systemdirection and two stable directions. The simulations by both
parameter shifts slightly the position of the attractor in thePetrovet al. and Dinget al. stabilized orbits with more than
state space and, as the system attempts to follow the attragne unstable direction where the largest Lyapunov multiplier
tor, the sensitive nature of the dynamics in the chaotic rewas usually<2. Generally, these implementations of high-
gime can cause large changes in its subsequent motiodimensional control use precontrol experiments to determine
Many feedback strategies based on this general idea uske control parameters and the control is applied with system
small perturbations in a control parameter to manipulate th@arameters fixed at their nominal values at the operating
behavior of chaotic systems. In 1990, Ott, Grebogi, andooint. Petrowet al. also demonstrated the ability to track and
Yorke (OGY) [1] described a closed loop feedback controlcontrol through slow changes in a system parameter but in a
scheme that stabilizes an UPO in a low-dimensional systersituation where a delay coordinate embedding, and hence a
with one unstable direction. The work of OGY spawnedrecursive control equation, was avoided.
much researcliboth experiment and thegrpn the control In this paper, we develop a tailored control scheme that
of chaotic systems. The recent review by Ott and Sd&ho extends the high-dimensional control capability in several
provides a good general overview of the field and there argvays. Larger unstable Lyapunov multipliers=6) can be
several more in-depth reviewW8]. Because nonlinear sys- accomodated and, more importantly, an automated tracking
tems are ubiquitous, various control methods have been aprocedure is developed for use with high-dimensional recur-
plied to systems found in diverse scientific fields and theresive control schemes. The adaptive nature of the control re-
are several general reviews written from the point of view ofsulting from the algorithm can be very important in control-
particular disciplineg4]. ling high-dimensional systems as we describe below. The
Until recently, most of the experimental work on control- control system includes a learning algorithm that automati-
ling chaos was done in systems that were highly dissipativesally probes the system dynamics using time-delay embed-
low-dimensional attractors and the stabilized UPO was aling of a single scalar variable to reconstruct a state space in
simple saddle orbit with a single unstable direction. Recentlythe neighborhood of the UPO, implements a control scheme
So and Ot{5] and Petrowet al.[6] developed new feedback stabilizing the UPO, and continually adapts to hold the con-
control schemes, derived from a delay coordinate reconstrud¢rol and track the UPO while slow system drifting takes
tion of the state space, to stabilize an UPO with more thamlace.
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Both the automation and the ability to adapt and track thehood of the fixed point of the Poincaraap for the UPO.
UPO are very useful, or even necessary, properties of anyhis simple control scheme was referred to as recursive pro-

control system that is to be successful in a real applicatioportional feedbackRPP.

where the desired operating point is an UPO with many un- Recent work [5-7] generalized the feedback control
stable directions. This is not solely because there are uncoscheme based on delay coordinate measurements to stabilize
trollable drifts present in most experimental situations. Aan UPO with more than one unstable direction embedded in
system, wandering on a high-dimensional chaotic attractora high-dimensional state space. So and Ott give a very gen-
may seldom come close to the desired UPO and the timeral treatment where the system is directed to the stable
required to learn the local dynamics from these visitationgnanifold of the UPO and the delay time for the embedding is
could be prohibitive. This problem was recognized by Sosuch that the state vector stretches back in time pegcles.

and Ott[5] and they suggest that some kind of targetingTheir result is a control scheme that will bring the system to
techniques[8,9] may be essential in controlling high- the stable manifold of the UPO in cycles, wherau is the
dimensional systems. Targeting techniques require a moneumber of unstable directions for the UPO. More precisely,
global understanding of the system dynamics and would be is the number of Lyapunov multipliers with magnitude
generally quite difficult to obtain in most high-dimensional greater than unity for the Poincameap evaluated at the fixed
systems. We suggest that the most practical solution to thigoint of the UPO. Each of the control equations determin-
problem is to start the system in a region of parameter spad@g the control parameter for the nextiterates depends on
where the attractor has lower dimension and the desired UPe d-dimensional delay coordinate state vector at the start of

has fewer unstable directions, or is even stable. If it is posthe first control cycle and the pastvalues of the control
sible to find such a region in parameter space, then it is eagyarameter.

to learn the local dynamics and stabilize the UPO there. The algorithms proposed by Petrost al. and Ding
Once stabilized, we can slowly, and purposefully, change thet al. are similar to those of So and Ott if we take the delay
parameters to move the system to the desired operating poifiine equal to the period of the UPO so that one component
where the attractor is high-dimensiorial may not exist at  of the time delay coordinate vector is obtained each period.
all) yet maintaining our automated adaptive control on theThus, it will taked periods to collect a complete state vector
UPO all the way to the operating point. Our proposedin this case and there will bet recursive terms in the step
method relies only on learning local dynamics and does nofeedback control. The dimensiah of the delay coordinate
require any knowledge of the global dynamics of the systemyector required to effect control is hardly ever knoavpri-

The next section provides a brief review of relevant recenpyi for a given experimental system. It is interesting to note
research to provide a context for our work. In the subsequerthat Petrovet al. demonstrate that one can “experimen-
sections we develop the control scheme, describe our adagylly” determine d by starting with a low value ofi and
tive learning strategy, and present the results of a simulatiofhcreasing it until control can be achieved. It is also clear that
using the Resler hyperchaotic model as an example tesif one of the Lyapunov multipliers, sag,,, for the UPO is
system. large, then waitingl periods to collect a state vector may not
provide a good description of the state of the system in the
presence of noise. Furthermore, assuming the system must
remain within Ax of the UPO in order for the linearized

The original OGY method stabilized unstable periodicdynamics to be valid, the system would have to start well
saddle orbits with one unstable direction in a low- within a distance\ ,%Ax of the fixed point to obtain a valid
dimensional state space by directing the system to the stabf#ate vector in delay-coordinate space evolving according to
manifold of the desired UPO. The information necessary fothe linearized dynamics. For similar reasons it would not be
control was obtained by linearizing the dynamics of the sysadvisable to calculate the neut control perturbations and
tem in the neighborhood of the UPO in a true state space dhen actually use these perturbations for the mexerations.
the system. The method was generalized to high-dimension#éh fact, the method recommended is to use the first control
state spaces by Romeirasal. [10] and by Ottet al. [11].  equation to calculate thé&p to be applied for the first of the
Often it is not possible to obtain measurements of enougl iterates and then, after taking that one step, repeat the first
independent variables to use the true state space to determisiep calculation using the updated information. This process
the necessary dynamical information for feedback control ofs repeated over and over to help eliminate the adverse am-
a chaotic system. Dressler and Nits¢h2,13 and Auerbach plification of system noise and measurement errors on the
et al. [14] showed that the necessary dynamical informatiorcontrol. We show below that the repeated application of the
can be obtained from a time-delay embedding using timdirst control equation in the absence of noise is exactly
series measurements of a single scalar variable. However, tlgjuivalent to the complete step control.
use of time-delay coordinates adds one or more recursive In the sections below we first develop a control scheme
terms to the feedback control equation. When the system ithat is similar to a special case of the So and Ott methods.
highly dissipative the control equation can be written in theWe aim to simplify the control scheme and to make it less
general form[15] 8p,=K&x,+R3dp,_1, where 8x,, is the  sensitive to large Lyapunov multipliers. We then describe an
deviation of the measured scalar variable from the desiredutomated adaptive learning algorithm that can be continu-
fixed point at the beginning of theth Poincarecycle and  ously applied to a system using a measured time series as
ép,, is the deviation of the control parameter from its nomi- input and supplying the appropriate control parameter to be
nal value during thenth cycle, andK andR are scalar con- used over the next control period in order to successfully
stants that depend on the system dynamics in the neighbostabilize the desired UPO. Finally, we describe a simulation

A. Background
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using the learning algorithm to control a test system with dF dF
dynamics governed by Reler's four-dimensional system U=F|ax,5p=o, WZW'&X&’FO- 5)
that has a hyperchaotic attractor. n-1 "

In what follows we present a-dimensional recursive
Il. DEVELOPMENT OF d-DIMENSIONAL RPF CONTROL proportional feedback algorithm and show that by repeatedly
A. Introduction applying the next control parameter perturbation we can sta-
. . . . . . bilize the system to its fixed point. We further develop an
Consider a continuous time dynamical system that lives iny ;o mated adaptive learning algorithm to obtain the informa-
a (d+1)-dimensional state space. To reduce the continuousop, yequired for controlling the system on the unstable fixed

time dy,namlfcal systgm to discrete .tlmle systlem we chtoose Boint from a scalar measurement of time series. Finally, the
Poincaresurface and measure a single scalar variadfl¢  5aptive recursive control algorithm is applied in a simula-

Whenevgr the trajectory crosses the Poincaetion. Let.tD tion using Rasler's model of a hyperchaotic system.
be the time at theth crossing andi, represent the position

in phase space at theth crossing of the Poincarsection.
Since the system is deterministic, the state at ttme is
uniquely determined by the state at time This gives the Given 6x,, and ép,,_1 we intend to show that the system
d-dimensional Poincaremap G relating the states at succes- can be stabilized to the fixed poiRr, in d+1 steps. Iterat-

B. Control strategy

sive iterative crossings as ing the map, given by Eq4), (d+1) times we obtain
Un41=G(Un,Pn), (1) 8o+ (a1 1)=MIUM X, +08p,_1) + M"Y Mw+v) 8p,,
where p,, is the value of the parametgr during the cycle +... +(l\7|w+ U)8Pntd—1tWoPnig-  (6)

starting at statel, .
Let x,=X(t,) be the value of a scalar variabteobserved  Equation(6) can be written in a more compact form,
at the start of thenth Poincarecycle. We reconstruct the

system dynamics at the Poincasection from this scalar by s (dr1)= MM 8%+ v3py_1) + Dpy+Wopn. g,  (7)
replacing the vectou, with the delay-coordinate vectot,

X(t,) vyhe[eﬁ is a dxd matrix, consisting of column vectors
" Mi(Mw+v), fori=d—1,...,0:
X(th—17)
X=| x(t,—27) |, ) D=[MI Y Mw+v):---:(Mw+0)] (8)
: and
X[t,—(d—=1)7]

where the number of delay coordinates should be large Py
enough to reproduce the important dynamics of the system. OPn+1
We intend to change a single scalar control parameter once opr= . C)
each Poincareycle to control the system. As pointed out by
Dressler and Nitschgl2,13, the use of delay coordinates OPn+d-1

increases the effective dimension of the state space because

the evolution of the system in the delay coordinate space not Now, we obtain a set ofl linear algebraic equations for
only depends on the delayed coordinate itself but also dethe control parameterép, by requiring X, (4+1)=0 and
pends on the value of the control parameter when that cooép,.q=0. The control equation obtained is

dinate was measured. To simplify this situation, we assume .

that |tr]—tn,1|>(d—1)r and thereby limit the number_ of opn=K &xp,+Rp,_1, (10)
recursive control parameter values needed to determine the

future of the system to one. In this case, the Poinca@p in |\ hareK = — D~ M9 ! andR= — D~ *M%. This result is a

the time-delayed space is of the form generalization of the previous recursive proportional feed-
_ back control equatiofil5] to the high-dimensional case.
Xn+1=F (X Po-1,Pn)- ® Thus, given anyx,, dp,_; at thenth step, we can bring
We now assume that the system has a fixed poink;,  the system to the fixed point imi¢- 1) steps by using control
for p,—1=pn=po and consider small deviations from the parameter perturbationp,, opn+1, ..., Pnrg-1 given
fixed point by definingsx,=(x,—Xp) and 8p,=(pn—Po)- l:_)y the ge_neral control equatidt0), for the firstd steps :_:md
Expanding Eq(3) to first order indx,, dp,, andép,_4, the  finally using p,,4=0 on step ¢+ 1). Furthermore, since

system dynamics near the fixed point is described by the control parameter perturbation used on the last step was
R zero (6pn+q=0), the system would stay, in the absence of
MXpnr1=M X, +vP,_1 T WOP,, (4) noise, perfectly balanced on the fixed point with all subse-

~ quent control perturbations set to zero. Note also that this
whereM is a (dxd) Jacobian matrix evaluated at the fixed procedure will bring the system to the fixed point in
point, v andw are d-dimensional vectors given by (d+ 1) steps even if there was no stable manifold. Of course,
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noise will be present in any real system and the above profixed point in the samed+ 1) steps. We start withdx,,,

cedure could be applied over and over to stabilize the systerg, .y and the coefficientsa, . . . ,a4) such that Eq(14)

on the fixed point. is satisfied. Applyingdp,=a, and iterating one step using
Strict application of the above strategy would suggest W& q. (4) gives

must calculate aheadi{ 1) steps in order to bring the sys-

tem to the fixed point. If one or more of the unstable multi- (17)

pliers is large in magnitude, or if the noise is not small, it

may not be possible to determine the system dynamics wit{ysjng Egs.(13) and(14) and rememberingp,=a,, we ob-

enough precision to calculated 1) steps forward. We t5in from Eq.(17) the result

show in the next section that a procedure that recalculates

after each step and always applies the control perturbation

for the first step in eachd(+ 1) step sequence is completely

equivalent in the absence of noise, to using the 'originaIApp|ymg the same control strategy to théx(, . ;,5p,,) start-
(d+1) step sequence. Thus, the latter procedure is prefe{hg point gives the nexsp as the coefficient of/;, or a, in

5Xn+l:|\7| 5Xn+ 6pn,1+Wal.

M X,y 1+t 00Pn=—a5y1—a3¥o— ... —agYg-1- (18

able in the presence of noise.

C. Equivalence of first-step control

this case, which is the same value obtained originally for the
control perturbation on the second step. Thus, repeated ap-
plication of the control strategy on each successive iteration

We now show that it is only necessary to find the controland using the coefficient of, each time as the nexdp

equation for the next step, that is,

8Pn=K{ 8%, +R18p,_1, (12)

reproduces the same sequence of control perturbations as
originally calculated. We have explicitly shown that the re-
peated application of the first step of thi 1) step control

is equivalent to thed+1) step control in the absence of

wherek; is ad-dimensional vector consisting of the first row noise. We would expect the repeated application of the first

of K andR; is the first component oR in Eq. (10). Re-

step would be better in the presence of noise because correc-

peated application of control perturbations calculated usingions are recalculated much more often.

Eqg. (12) will bring the system to the fixed point id+1
steps.

We assume that neithernor v is equal to an eigenvector
of the matrixM and thatM does not have degenerate eigen-

values. We define a set of basis vect@ret necessarily or-
thogona)

Y1:Y2, - -+ Y (12

that span thel-dimensional space, where
yi=M~ly_;, andy,=Mw+v, (13
fori=1,... d. Thus, for anydx, and ép,_,, we can write

M5Xn+v5pn71: —(ayitagy,t ... +tagys), (14

whereay, ... ,a4 are real numbers. Using E(L3), the gen-
eral control equatioril0) becomes

I\7|d71y0(5pn_ a;)+ I\7|(172)/0((5l3n4r1_ ay)

+ .+ Yo(Pn+d-1—a9) =0, (15
which has the unique solution
OPn+i-1= & (16)

fori= 1,...d. Thus, given ¢x,, dp,_1), there exists a
unique set of coefficientsag, ... ,a4) such that Eq(14) is
satisfied. And if we iterate the systerd{ 1) times using
the sequence of control perturbationdp,.i_1=a;,
i=1,...d, for the firstd steps and takép, . 4=0 for the

Ill. ADAPTIVE LEARNING ALGORITHM

The learning algorithm described below is a generaliza-
tion of a recent strateghl6,17] based on simple neural net-
works. We must determine the linearized system dynamics in
the neighborhood of the desired fixed point in order to imple-
ment the above control strategy. It is particularly important
for high-dimensional systems that an automatic learning al-
gorithm be used to obtain the required information about the
system dynamics because an uncontrolled high-dimensional
system will rarely visit the state space close to the desired
orbit. An automated learning algorithm can follow changes
in the system dynamic&‘'adapt”) as a system parameter is
slowly changed. This capability can be used to greatly in-
crease the feasibility of control on an unstable orbit in re-
gions of parameter space where very few, or even none, of
the directions in state space near the orbit are stable. This can
be done by changing the system parameters until we find a
region of parameter space where the desired orbit is more
stable. Once the system is on the stable orbit, we slowly
change a system parameter in order to bring the system to a
desired operating state. While changing the system param-
eter the adaptive nature of the learning algorithm enables us
to follow the changes in the system dynamics and thus main-
tain control. Using this strategy, the desired operating state
may be an unstable fixed point that is not part of any attrac-
tor.

When applying our algorithm to a particular system, we
assume that we have gained enough experience with the dy-
namics of the system under study to choose an appropriate

last step, then the system is brought to the fixed pointPoincaresection and a desirable periodic orbit for control.
nrd+1=0. The dimensiord of the embedding space should be chosen
Now we show explicitly that repeated application of the as small as possible and yet remove false nearest neighbors
first step of the control strategy gives the exact same sdn the neighborhood of the fixed point corresponding to the
quence of control perturbations bringing the system to thalesired periodic orbit on the Poincasection. The choice of
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the delay timer is not critical so long as the condition the oldest close-return datasX;, 1, dpi_1, 6P, OXi+1)
(ti—t,-1)>(d—1)7 is satisfied. In practice, it is best to from Eq. (22) and replace it with the most current close-
chooser such that the delay-coordinate vectgrhas com-  return data. This ensures adaptability in the presence of sys-
ponents distributed nearly uniformly throughout most of thetem drift.

time interval between Poincasection crossings for the con-  In order to simultaneously apply the above adaptive learn-
trolled periodic orbit. In general, the value efvould not be  ing and control procedure it is essential to add a small
changed by our adaptive learning algorithm, but in particulatamount of random noise to the control signal. Without this
cases, the dynamics of the orbit may be such thean be noise, the controlled system would be constrained to a hy-
chosen based on a particular signature of the orbit itself. Thpersurface given by control equatigh0), which is a sub-
latter method has the advantage that it will automaticallyspace of the linearized system dynamics, &)y. However,
adapt with the control orbit and this is the method used inwhile applying control we need to simultaneously update the

our simulation. coefficients of Eq(4). When the system is tightly controlled,
We assume the dynamics around the fixed point in lineait is constrained on a projectiofx; . ;=0, and does not ex-
order to be described by ploit the full dimensionality of Eq(4). Therefore, it becomes
- impossible to extract complete information about the linear-
Xn+1=MX,+b+vép,_1+WSp,, 19 jzed system dynamics, given by the coefficierlts, ,v) of

h the offset tdy t be included b tEq. (4), from successive controlled iterations. Stated in an-
where the ofiSet vectds must be Included because we must . o way, the learning matrix in E¢22) matrix becomes

d_etermme t.he pOS!tIOh of the desired fixed point. The pOSI'singular, since the rows satisfy a linear dependency implied
tlpn of the fixed poini;,, can be evaluated from E(L9) to by the control equatiofil1l). This can be resolved by adding
give small random noise to the control signgp,, such that the
system is still controlled well enough to stay in the vicinity
of the fixed point, yet successive iterations do not perfectly
satisfy Eq.(11). The randomness of the additional control
component guarantees that the system probes the full dimen-
sionality of Eq.(4) and removes the singularity in the learn-
]jng matrix allowing the determination of the system dynam-
ics while applying control.

Xip=(1—M) b, (20)

Thus we must determind(d+3) scalar valuesthe d?
components of the matriM and the threed-dimensional
vectorsh, v, andw) in order to know the linearized system
dynamics in the neighborhood of the desired fixed point o
the Poincaresection and the position of the fixed point. Con-
structing a @+ 3)-dimensional column vector of,, 1,
SPn—1, OP,, and adXx (d+ 3)-dimensional matrix oM, b,

v, w, Eq. (19 can be written as

IV. SIMULATION: CONTROL OF THE HYPERCHAOQOTIC
ROSSLER SYSTEM

The first simple example of a system possessing an attrac-

Xn tor with more than one unstable directi@myperchaoswas
. 1 provided by Rssler[18] by adding a fourth variable to a
[M:b:v:w] =[Xn+1]. (21)  simple three-variable model of a chemical reaction scheme.
OPn—1 The hyperchaotic Resler system described by
3pn _
X=-y—2,
To implement the control, the system dynamics described by
M, b, v, andw must be determined. The adaptive algorithm y=X+.25/+W,
waits for the system to have a close return, that is when the (23
values ofx,, ; andx, are close to each other. For each close _
return, the current values of,, dp,_1, opn, Xn+1 are re- z=b+xz,
corded. Using a collection of such close returns, 4) can
be expanded to w=(—0.5+p)z+.05w,
Xn . Xk T T has an attractor with two positive Lyapunov exponents for a
~ 1 1 n+l range of the bifurcation parameter Rassler originally took
[M:b:v:w] =| . (22 b=3 andp=0 where we find the Lyapunov exponents of
OPn—1 OPk-1 T the attractor to be aboi(©.160, 0.0275, 0.000;30.3 bits/
opp ... Opg k+l unit-time using the Wolkt al.[19,20 algorithm. The hyper-

chaotic attractor contains a period-two UPO at these param-
The second matrix henceforth will be referred to as the learneter values(see Fig. 1 This orbit has two unstable
ing matrix. This system of linear algebraic equations can b yapunov multipliers with the largest one greater than 5. Our
solved uniquely if i+ 3) close returns are observed. In gen- attempts to apply control on this UPO directly were not suc-
eral, we collectN>(d+3) incidents and use singular value cessful because the system seldom came close enough to the
decomposition(SVD) to obtain a linear least squares fit to orbit and the time required to determine the linearized dy-
find the best values for the elementsMfand vectorsx;, namics in the neighborhood of the orbit was too long. How-
v, andw. This will improve the determination of these values ever, forb=13, the period-two orbit is stable. Thus, the dy-
in the presence of noise. To allow for system drift, we erasa@amics are easily obtained fdr=13 and then we use the
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Minima of Y(t)

2 4 6 8 10 12
Parameter b

FIG. 2. Controlling and tracking the period-two orbit from
b=13 tob=2.2. The minima ofy(t) are plotted versub. Results
of two runs, one with control and learning on, and one with control

FIG. 1. A projection of the hyperchaotic attractor with embed- off, are superimposed.

ded period-two orbit intoX,y,z) space for the Resler system with
b=3 andp=0.

adaptive algorithm to maintain the stability of the orbit while !N & situation like this tracking becomes an important is-
slowly taking the system to the region aroubek3 where  SU€: Wg start the system fgr 'the parameter value \_/vhere the
the system is hyperchaotic. appropna'te Iow—perloq orbit is naturally stablg. Sln.ce. the

To simulate an experimental situation, we consider only &8YStém will be always in the neighborhood of this orbit, find-
single scalar signaj(t) available for measurement and use ing the control weights by estimating the linearized dynam-
parametemp for control while system drift is simulated by ics can be done in a few iterations. Our aim is to control the
Varying parameteb_ The time-de|ay coordinate vectaris chosen orbit when the parameter setting is in the chaotic
constructed frony(t) according to Eq(2) wheret, indicates ~ regime. This is done by slowly changing a parameter to
the time wheny(t) goes through a minimum. We found that reach chaotic region while adapting the control parameters to
an embedding dimension of two was optimal for the orbitthis change without losing control. Our adaptive learning
shown as the solid line in Fig. 1. We were unable to controlstrategy simultaneously applies control signal and uses the
using an only one-dimensional embedding. Control was possystem response to reestimate the system dynamics and de-
sible ford>2 but more difficult than fod=2. This can be termine the control weights.
explained by noting that the Lyapunov spectra contains two We found that the period-two orbit is stable when
positive exponents, which shows that the unstable manifolgRgssler's parametelb= 13 (see Fig. 2 Thus, we start with
is two-dimensional. We chose an orbit that completes tw@=13 and apply small random control parameter changes
oscillations per cycle and we chose to take each minimum of,  to cause the system to sample the region of state space
y(t) as data; placing our Poincasection at the smaller of near the desired orbiwvhich is now stablpand use the adap-
the two minima. The embedding vector in this particular casgje control algorithm to learn about the system dynamics.
reduces to Then we implement control and slowly decredsevell be-

1 yond the value where the period two orbit becomes unstable.

y(ta) The two-dimensional recursive control algorithm is able to
vt 29 X

stabilize the orbit over a wide range lbfas shown in Fig. 2.
1 P i Continuous learning through updating of the learning matrix
where ¢,%) and t,°) indicate thenth timey(t) goes through
the first and the second minima, respectively. Note that th

ensures the adaptability of the control to the drift of the sys-
delay time 7 used in this case is determined by the time

Xn

fem parameteb.

. S : . In Fig. 3 atb=8 we discontinue learning and hold the
between successive minima in the control orbit and hencecontrol arameter of Eq(11), k dR. fixed. At
7 will adapt automatically along with the orbit. . P r ot EquLD), K1, Xep, and Ry 1Ixed.

To be able to control a particular orbit of the system, the' :,100 we .release controll and the system goes Cha,Ot'C' Then,
orbit must first be identified and then the control weights@t itérationi =200, we switch control on again. At this value
must be determined. In the case of a low-dimensional sys2f b, the system comes sufficiently close to the fixed point
tem, like the model of a thermal pulsed combugtt], this that control can be reestablished after about 150 iterations.
was done by simply waiting for close returns in the Poincardiowever, ad becomes smaller the orbit becomes more and
map to identify a period-one orbit and determine the contromore unstable and the region of the attractor containing the
parameters. But the Reler system very seldom comes closeorbit is visited less often.
to the orbit which we choose to control. Therefore the strat- To confirm the estimation of the system dynamics by our
egy of waiting for close returns in the return map is imprac-control algorithm, we independently perform a stability
tical. analysis of the particular period-two orbit. Using real phase
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FIG. 3. The controlled Resler system folbo=8. After 100 FIG. 4. Stability analysis for the period-two orbit. Taking a

cycles, control is turned off. The system falls off the period-two Poincaresection whery(t) goes through a minimum, we numeri-
orbit into a chaotic state. At 200 iterations control is turned back oncally calculate the eigenvalues of the linearized map around the
The control recaptures the period-two orbit the first time the systenassociated period-two fixed point using two methods. The solid line
happens to fall inside the control window, given by the maximumis the magnitude of the eigenvalues greater than one of the Jacobian
allowed control shiftop,,. Throughout the entire process learning of the Poincaremap in the true phase space coordinatesw.

was turned off and the control weights were held constant. Newton’s method is used to follow the fixed point. One eigenvalue
is near zero throughout. The other two are complex conjugates for
b between 13 and 4.05, and becqme realdfer4.05. The triangles
are the eigenvalues of the matri obtained from the learning-
control algorithm using a two-dimensional delay coordinate embed-
ding as described in the text.

space coordinatesx(z,w), we take the three-dimensional
Poincaresection at the minima of/(t). From this three-
dimensional Poincarenap, we numerically calculate the
Jacobian around the period-two fixed point by taking differ-
ences for neighboring points. We keep track of the fixed
point using Newton’s method, while drifting the system ciated distortion of the other eigenvalue. For higher drift
through the parameter space well below the point where theates, this effect becomes more pronounced and if the drift
orbit becomes unstable. rate is too high the closed loop system is unable to maintain
The eigenvalues of the>33 Jacobian matrix indicate the control and learn at the same time.
stability of the orbit. One of the eigenvalues was found to be  Figure 5 shows the effect of drift on the eigenvalues of
almost zero. The other two are complex conjugates of eaclW found by the learning algorithm. We first start the con-
other for b between 13 and 4.05, and become real forirolled system ab=9 and then we initiate the drift. For drift
b<4.05. step sizessb=10"2 and 10 * per cycle, we plot the eigen-

~ By comparing the eigenvalues of the mathk with the  yajues ofM obtained at each step by the learning-control
eigenvalues found for the Poincamap in the true phase

space, we can judge the quality of the system dynamics de-

termined by the learning-control algorithm. Such a compari- 50 : : . :

son is shown in Fig. 4. For integer values of the parameter "‘,,-"f AT

b, we stop drifting, but continue learning with control and LF T "”l““,‘-"‘. fﬂt‘lh Ui ! |
noise on. The triangles in Fig. 4 depict the modulus of the 185 i, “hl.u‘u‘ﬁl.,.humu i

eigenvalues oM, averaged over around 100 learning cycles.
Agreement is very good with the continuous curve that

Eigenvalues

shows the modulus of the eigenvalugise two which have 1.6f ]

modulus greater than ophef the Jacobian of the Poincare !

map in the true phase space calculated while following the r

fixed point using Newton’s method as explained above. Note 141 ]

that the largest Lyapunov multiplier, which is the largest

eigenvalue magnitude, approaches 10 as the paraimeier 12l . . . .

proaches 1. 7.0 7.2 7.4 7.6 7.8 8.0
The quality of the determination of system dynamics by Parameter b

the learning algorithm depends on the drift rate. The steady

drift of a system parameter induces a small steady translation G, 5. The effect of drift on the eigenvaluesMffound by the
of the state space variables of the system indicating the sloyéarning-control algorithm. For a drift rate @b=10"* per period
change in the position of the fixed point. This causes thehe eigenvalueupper ploj stay close to the curve given by the true
matrix M that is obtained while drifting to have the tendency state space stability analygisick line). A drift rate ten times larger
for one of its eigenvalues to move toward one and an ass@auses a sudden decrease in the eigenvalubt @dwer plob.
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algorithm. While for the small drift rate the eigenvalues stayrandom perturbations to the system in order to both learn the
close to the curve given by the stability analysis in the truedynamics and control the system at the same time.
state space, increasing the drift rate by a factor of ten gives Our simulation used the adaptive learning algorithm to
rise to a sudden decrease of the modulus of the eigenvaluestabilize an orbit with two unstable directions. The method is
designed to be applicable when more than two unstable di-
V. CONCLUSIONS rections are present. The difficulties encountered in practical
. ) applications will no doubt increase with the number of un-
An automated adaptive control algorithm based on a regtaple directions and it remains for future research to deter-
construction of the relevant linearized dynamics from time-mine the limits and robustness of the algorithm under such
delay coordinates was developed for high-dimensional chasonditions. In any case, the simultaneous learning and con-
otic systems using a single control parameter. The algorithiyo| capability is likely to be important in any future appli-

was applied in a simulation using the $dter hyperchaotic  cation of this type of active feedback control to real systems
system with relatively large unstable Lyapunov multipliers.yith multiple unstable directions.

Although the Poincaremap for this system is three-

dimensional, we found a two-dimensional embedding to re-

construct the state space was sufficient to c_ontrql the system. ACKNOWLEDGMENTS
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