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We develop and demonstrate an automated control strategy using an adaptive learning algorithm that can
control and track periodic orbits even if they are completely unstable, i.e., have no stable manifolds. The
control system is designed to operate in real time, taking time series measurements of a single variable as input
and providing as output the control parameter value required to stabilize the desired unstable periodic orbit
~UPO!. The control scheme directs the system to the fixed point itself rather than a stable manifold and works
when the the unstable Lyapunov multipliers are relatively large ('6). The learning and control algorithm uses
a time delay embedding with the full state vector collected within one period of the controlled orbit. Control is
achieved by small perturbations of a single control parameter once each cycle using a control algorithm with
one recursive term. A simulation is used to study the application of the control algorithm to the hyperchaotic
Rössler system. The simulation demonstrates both control of a highly unstable UPO and tracking the UPO as
system parameters slowly drift over a wide range. The difficulties encountered in tracking with recursive
control are discussed.@S1063-651X~96!14911-4#

PACS number~s!: 05.45.1b, 87.10.1e

I. INTRODUCTION

Perhaps one of the most promising applications of the
recent advances in nonlinear dynamics is in the area of sys-
tem control. Nonlinear dissipative systems typically possess
dynamics that have a sensitive dependence on initial condi-
tions. These systems settle into a deterministic ergodic wan-
dering motion on a chaotic attractor in state space and the
attractor usually has an infinite set of unstable periodic orbits
~UPOs! embedded within it. A small change in a system
parameter shifts slightly the position of the attractor in the
state space and, as the system attempts to follow the attrac-
tor, the sensitive nature of the dynamics in the chaotic re-
gime can cause large changes in its subsequent motion.
Many feedback strategies based on this general idea use
small perturbations in a control parameter to manipulate the
behavior of chaotic systems. In 1990, Ott, Grebogi, and
Yorke ~OGY! @1# described a closed loop feedback control
scheme that stabilizes an UPO in a low-dimensional system
with one unstable direction. The work of OGY spawned
much research~both experiment and theory! on the control
of chaotic systems. The recent review by Ott and Spano@2#
provides a good general overview of the field and there are
several more in-depth reviews@3#. Because nonlinear sys-
tems are ubiquitous, various control methods have been ap-
plied to systems found in diverse scientific fields and there
are several general reviews written from the point of view of
particular disciplines@4#.

Until recently, most of the experimental work on control-
ling chaos was done in systems that were highly dissipative,
low-dimensional attractors and the stabilized UPO was a
simple saddle orbit with a single unstable direction. Recently
So and Ott@5# and Petrovet al. @6# developed new feedback
control schemes, derived from a delay coordinate reconstruc-
tion of the state space, to stabilize an UPO with more than

one unstable direction. The use of delay coordinates leads to
recursive control equations, i.e., the control used during the
next cycle depends not only on the deviation of the system
from the desired fixed point in state space but also on the
control parameter deviations used on one or more previous
cycles. Building on this work, Dinget al. @7# developed a
high-dimensional control method designed for relatively
easy experimental implementation and applied it to control a
driven magnetoelastic ribbon with one moderately unstable
direction and two stable directions. The simulations by both
Petrovet al. and Dinget al. stabilized orbits with more than
one unstable direction where the largest Lyapunov multiplier
was usually,2. Generally, these implementations of high-
dimensional control use precontrol experiments to determine
the control parameters and the control is applied with system
parameters fixed at their nominal values at the operating
point. Petrovet al. also demonstrated the ability to track and
control through slow changes in a system parameter but in a
situation where a delay coordinate embedding, and hence a
recursive control equation, was avoided.

In this paper, we develop a tailored control scheme that
extends the high-dimensional control capability in several
ways. Larger unstable Lyapunov multipliers ('6) can be
accomodated and, more importantly, an automated tracking
procedure is developed for use with high-dimensional recur-
sive control schemes. The adaptive nature of the control re-
sulting from the algorithm can be very important in control-
ling high-dimensional systems as we describe below. The
control system includes a learning algorithm that automati-
cally probes the system dynamics using time-delay embed-
ding of a single scalar variable to reconstruct a state space in
the neighborhood of the UPO, implements a control scheme
stabilizing the UPO, and continually adapts to hold the con-
trol and track the UPO while slow system drifting takes
place.
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Both the automation and the ability to adapt and track the
UPO are very useful, or even necessary, properties of any
control system that is to be successful in a real application
where the desired operating point is an UPO with many un-
stable directions. This is not solely because there are uncon-
trollable drifts present in most experimental situations. A
system, wandering on a high-dimensional chaotic attractor,
may seldom come close to the desired UPO and the time
required to learn the local dynamics from these visitations
could be prohibitive. This problem was recognized by So
and Ott @5# and they suggest that some kind of targeting
techniques @8,9# may be essential in controlling high-
dimensional systems. Targeting techniques require a more
global understanding of the system dynamics and would be
generally quite difficult to obtain in most high-dimensional
systems. We suggest that the most practical solution to this
problem is to start the system in a region of parameter space
where the attractor has lower dimension and the desired UPO
has fewer unstable directions, or is even stable. If it is pos-
sible to find such a region in parameter space, then it is easy
to learn the local dynamics and stabilize the UPO there.
Once stabilized, we can slowly, and purposefully, change the
parameters to move the system to the desired operating point
where the attractor is high-dimensional~or may not exist at
all! yet maintaining our automated adaptive control on the
UPO all the way to the operating point. Our proposed
method relies only on learning local dynamics and does not
require any knowledge of the global dynamics of the system.

The next section provides a brief review of relevant recent
research to provide a context for our work. In the subsequent
sections we develop the control scheme, describe our adap-
tive learning strategy, and present the results of a simulation
using the Ro¨ssler hyperchaotic model as an example test
system.

A. Background

The original OGY method stabilized unstable periodic
saddle orbits with one unstable direction in a low-
dimensional state space by directing the system to the stable
manifold of the desired UPO. The information necessary for
control was obtained by linearizing the dynamics of the sys-
tem in the neighborhood of the UPO in a true state space of
the system. The method was generalized to high-dimensional
state spaces by Romeiraset al. @10# and by Ottet al. @11#.
Often it is not possible to obtain measurements of enough
independent variables to use the true state space to determine
the necessary dynamical information for feedback control of
a chaotic system. Dressler and Nitsche@12,13# and Auerbach
et al. @14# showed that the necessary dynamical information
can be obtained from a time-delay embedding using time
series measurements of a single scalar variable. However, the
use of time-delay coordinates adds one or more recursive
terms to the feedback control equation. When the system is
highly dissipative the control equation can be written in the
general form@15# dpn5Kdxn1Rdpn21, wheredxn is the
deviation of the measured scalar variable from the desired
fixed point at the beginning of thenth Poincare´ cycle and
dpn is the deviation of the control parameter from its nomi-
nal value during thenth cycle, andK andR are scalar con-
stants that depend on the system dynamics in the neighbor-

hood of the fixed point of the Poincare´ map for the UPO.
This simple control scheme was referred to as recursive pro-
portional feedback~RPF!.

Recent work @5–7# generalized the feedback control
scheme based on delay coordinate measurements to stabilize
an UPO with more than one unstable direction embedded in
a high-dimensional state space. So and Ott give a very gen-
eral treatment where the system is directed to the stable
manifold of the UPO and the delay time for the embedding is
such that the state vector stretches back in time overr cycles.
Their result is a control scheme that will bring the system to
the stable manifold of the UPO inu cycles, whereu is the
number of unstable directions for the UPO. More precisely,
u is the number of Lyapunov multipliers with magnitude
greater than unity for the Poincare´ map evaluated at the fixed
point of the UPO. Each of theu control equations determin-
ing the control parameter for the nextu iterates depends on
thed-dimensional delay coordinate state vector at the start of
the first control cycle and the pastr values of the control
parameter.

The algorithms proposed by Petrovet al. and Ding
et al. are similar to those of So and Ott if we take the delay
time equal to the period of the UPO so that one component
of the time delay coordinate vector is obtained each period.
Thus, it will taked periods to collect a complete state vector
in this case and there will bed recursive terms in theu step
feedback control. The dimensiond of the delay coordinate
vector required to effect control is hardly ever knowna pri-
ori for a given experimental system. It is interesting to note
that Petrovet al. demonstrate that one can ‘‘experimen-
tally’’ determine d by starting with a low value ofd and
increasing it until control can be achieved. It is also clear that
if one of the Lyapunov multipliers, sayLm , for the UPO is
large, then waitingd periods to collect a state vector may not
provide a good description of the state of the system in the
presence of noise. Furthermore, assuming the system must
remain withinDx of the UPO in order for the linearized
dynamics to be valid, the system would have to start well
within a distanceLm

2dDx of the fixed point to obtain a valid
state vector in delay-coordinate space evolving according to
the linearized dynamics. For similar reasons it would not be
advisable to calculate the nextu control perturbations and
then actually use these perturbations for the nextu iterations.
In fact, the method recommended is to use the first control
equation to calculate thedp to be applied for the first of the
u iterates and then, after taking that one step, repeat the first
step calculation using the updated information. This process
is repeated over and over to help eliminate the adverse am-
plification of system noise and measurement errors on the
control. We show below that the repeated application of the
first control equation in the absence of noise is exactly
equivalent to the completeu step control.

In the sections below we first develop a control scheme
that is similar to a special case of the So and Ott methods.
We aim to simplify the control scheme and to make it less
sensitive to large Lyapunov multipliers. We then describe an
automated adaptive learning algorithm that can be continu-
ously applied to a system using a measured time series as
input and supplying the appropriate control parameter to be
used over the next control period in order to successfully
stabilize the desired UPO. Finally, we describe a simulation
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using the learning algorithm to control a test system with
dynamics governed by Ro¨ssler’s four-dimensional system
that has a hyperchaotic attractor.

II. DEVELOPMENT OF d-DIMENSIONAL RPF CONTROL

A. Introduction

Consider a continuous time dynamical system that lives in
a (d11)-dimensional state space. To reduce the continuous-
time dynamical system to discrete time system we choose a
Poincare´ surface and measure a single scalar variablex(t)
whenever the trajectory crosses the Poincare´ section. Lettn
be the time at thenth crossing andun represent the position
in phase space at thenth crossing of the Poincare´ section.
Since the system is deterministic, the state at timetn11 is
uniquely determined by the state at timetn . This gives the
d-dimensional Poincare´ mapG relating the states at succes-
sive iterative crossings as

un115G~un ,pn!, ~1!

wherepn is the value of the parameterp during the cycle
starting at stateun .

Let xn5x(tn) be the value of a scalar variablex observed
at the start of thenth Poincare´ cycle. We reconstruct the
system dynamics at the Poincare´ section from this scalar by
replacing the vectorun with the delay-coordinate vectorxn

xn5S x~ tn!

x~ tn2t!

x~ tn22t!

A

x@ tn2~d21!t#

D , ~2!

where the number of delay coordinates should be large
enough to reproduce the important dynamics of the system.
We intend to change a single scalar control parameter once
each Poincare´ cycle to control the system. As pointed out by
Dressler and Nitsche@12,13#, the use of delay coordinates
increases the effective dimension of the state space because
the evolution of the system in the delay coordinate space not
only depends on the delayed coordinate itself but also de-
pends on the value of the control parameter when that coor-
dinate was measured. To simplify this situation, we assume
that utn2tn21u.(d21)t and thereby limit the number of
recursive control parameter values needed to determine the
future of the system to one. In this case, the Poincare´ map in
the time-delayed space is of the form

xn115F~xn ,pn21 ,pn!. ~3!

We now assume that the system has a fixed pointx5xf p
for pn215pn5p0 and consider small deviations from the
fixed point by definingdxn[(xn2xf p) anddpn[(pn2p0).
Expanding Eq.~3! to first order indxn , dpn, anddpn21, the
system dynamics near the fixed point is described by

dxn115M̂dxn1vdpn211wdpn , ~4!

whereM̂ is a (d3d) Jacobian matrix evaluated at the fixed
point, v andw ared-dimensional vectors given by

v5
dF

dpn21
udx,dp50 , w5

dF

dpn
udx,dp50 . ~5!

In what follows we present ad-dimensional recursive
proportional feedback algorithm and show that by repeatedly
applying the next control parameter perturbation we can sta-
bilize the system to its fixed point. We further develop an
automated adaptive learning algorithm to obtain the informa-
tion required for controlling the system on the unstable fixed
point from a scalar measurement of time series. Finally, the
adaptive recursive control algorithm is applied in a simula-
tion using Ro¨ssler’s model of a hyperchaotic system.

B. Control strategy

Given dxn anddpn21 we intend to show that the system
can be stabilized to the fixed pointxf p in d11 steps. Iterat-
ing the map, given by Eq.~4!, (d11) times we obtain

dxn1~d11!5M̂d~M̂dxn1vdpn21!1M̂d21~M̂w1v!dpn

1•••1~M̂w1v!dpn1d211wdpn1d . ~6!

Equation~6! can be written in a more compact form,

dxn1~d11!5M̂d~M̂dxn1vdpn21!1D̂dpn1wdpn1d , ~7!

where D̂ is a d3d matrix, consisting of column vectors
M̂ i(M̂w1v), for i5d21, . . . ,0 :

D̂5@M̂d21~M̂w1v!:•••:~M̂w1v!# ~8!

and

dpn5S dpn
dpn11

A

dpn1d21

D . ~9!

Now, we obtain a set ofd linear algebraic equations for
the control parametersdpn by requiringdxn1(d11)50 and
dpn1d50. The control equation obtained is

dpn5K̂dxn1Rdpn21 , ~10!

whereK̂52D̂21M̂d11 andR52D̂21Mdv. This result is a
generalization of the previous recursive proportional feed-
back control equation@15# to the high-dimensional case.

Thus, given anydxn , dpn21 at thenth step, we can bring
the system to the fixed point in (d11) steps by using control
parameter perturbationsdpn , dpn11 , . . . , dpn1d21 given
by the general control equation~10!, for the firstd steps and
finally using dpn1d50 on step (d11). Furthermore, since
the control parameter perturbation used on the last step was
zero (dpn1d50), the system would stay, in the absence of
noise, perfectly balanced on the fixed point with all subse-
quent control perturbations set to zero. Note also that this
procedure will bring the system to the fixed point in
(d11) steps even if there was no stable manifold. Of course,
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noise will be present in any real system and the above pro-
cedure could be applied over and over to stabilize the system
on the fixed point.

Strict application of the above strategy would suggest we
must calculate ahead (d11) steps in order to bring the sys-
tem to the fixed point. If one or more of the unstable multi-
pliers is large in magnitude, or if the noise is not small, it
may not be possible to determine the system dynamics with
enough precision to calculate (d11) steps forward. We
show in the next section that a procedure that recalculates
after each step and always applies the control perturbation
for the first step in each (d11) step sequence is completely
equivalent, in the absence of noise, to using the original
(d11) step sequence. Thus, the latter procedure is prefer-
able in the presence of noise.

C. Equivalence of first-step control

We now show that it is only necessary to find the control
equation for the next step, that is,

dpn5k1
Tdxn1R1dpn21 , ~11!

wherek1
T is ad-dimensional vector consisting of the first row

of K̂ andR1 is the first component ofR in Eq. ~10!. Re-
peated application of control perturbations calculated using
Eq. ~11! will bring the system to the fixed point ind11
steps.

We assume that neitherw norv is equal to an eigenvector
of the matrixM̂ and thatM̂ does not have degenerate eigen-
values. We define a set of basis vectors~not necessarily or-
thogonal!

y1 ,y2 , . . . ,yd ~12!

that span thed-dimensional space, where

yi5M̂21yi21 , andy05M̂w1v, ~13!

for i51, . . . ,d. Thus, for anydxn anddpn21, we can write

M̂dxn1vdpn2152~a1y11a2y21 . . .1adyd!, ~14!

wherea1 , . . . ,ad are real numbers. Using Eq.~13!, the gen-
eral control equation~10! becomes

M̂d21y0~dpn2a1!1M̂d22y0~dpn112a2!

1 . . .1y0~dpn1d212ad!50, ~15!

which has the unique solution

dpn1 i215ai ~16!

for i5 1, . . . ,d. Thus, given (dxn , dpn21), there exists a
unique set of coefficients (a1 , . . . ,ad) such that Eq.~14! is
satisfied. And if we iterate the system (d11) times using
the sequence of control perturbationsdpn1 i215ai ,
i51, . . . ,d, for the firstd steps and takedpn1d50 for the
last step, then the system is brought to the fixed point,
dxn1d1150.

Now we show explicitly that repeated application of the
first step of the control strategy gives the exact same se-
quence of control perturbations bringing the system to the

fixed point in the same (d11) steps. We start with (dxn ,
dpn21) and the coefficients (a1 , . . . ,ad) such that Eq.~14!
is satisfied. Applyingdpn5a1 and iterating one step using
Eq. ~4! gives

dxn115M̂dxn1dpn211wa1 . ~17!

Using Eqs.~13! and~14! and rememberingdpn5a1, we ob-
tain from Eq.~17! the result

M̂dxn111vdpn52a2y12a3y22 . . .2adyd21 . ~18!

Applying the same control strategy to the (dxn11 ,dpn) start-
ing point gives the nextdp as the coefficient ofy1, or a2 in
this case, which is the same value obtained originally for the
control perturbation on the second step. Thus, repeated ap-
plication of the control strategy on each successive iteration
and using the coefficient ofy1 each time as the nextdp
reproduces the same sequence of control perturbations as
originally calculated. We have explicitly shown that the re-
peated application of the first step of the (d11) step control
is equivalent to the (d11) step control in the absence of
noise. We would expect the repeated application of the first
step would be better in the presence of noise because correc-
tions are recalculated much more often.

III. ADAPTIVE LEARNING ALGORITHM

The learning algorithm described below is a generaliza-
tion of a recent strategy@16,17# based on simple neural net-
works. We must determine the linearized system dynamics in
the neighborhood of the desired fixed point in order to imple-
ment the above control strategy. It is particularly important
for high-dimensional systems that an automatic learning al-
gorithm be used to obtain the required information about the
system dynamics because an uncontrolled high-dimensional
system will rarely visit the state space close to the desired
orbit. An automated learning algorithm can follow changes
in the system dynamics~‘‘adapt’’ ! as a system parameter is
slowly changed. This capability can be used to greatly in-
crease the feasibility of control on an unstable orbit in re-
gions of parameter space where very few, or even none, of
the directions in state space near the orbit are stable. This can
be done by changing the system parameters until we find a
region of parameter space where the desired orbit is more
stable. Once the system is on the stable orbit, we slowly
change a system parameter in order to bring the system to a
desired operating state. While changing the system param-
eter the adaptive nature of the learning algorithm enables us
to follow the changes in the system dynamics and thus main-
tain control. Using this strategy, the desired operating state
may be an unstable fixed point that is not part of any attrac-
tor.

When applying our algorithm to a particular system, we
assume that we have gained enough experience with the dy-
namics of the system under study to choose an appropriate
Poincare´ section and a desirable periodic orbit for control.
The dimensiond of the embedding space should be chosen
as small as possible and yet remove false nearest neighbors
in the neighborhood of the fixed point corresponding to the
desired periodic orbit on the Poincare´ section. The choice of
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the delay timet is not critical so long as the condition
(tn2tn21).(d21)t is satisfied. In practice, it is best to
chooset such that the delay-coordinate vectorxn has com-
ponents distributed nearly uniformly throughout most of the
time interval between Poincare´ section crossings for the con-
trolled periodic orbit. In general, the value oft would not be
changed by our adaptive learning algorithm, but in particular
cases, the dynamics of the orbit may be such thatt can be
chosen based on a particular signature of the orbit itself. The
latter method has the advantage that it will automatically
adapt with the control orbit and this is the method used in
our simulation.

We assume the dynamics around the fixed point in linear
order to be described by

xn115M̂xn1b1vdpn211wdpn , ~19!

where the offset vectorbmust be included because we must
determine the position of the desired fixed point. The posi-
tion of the fixed pointxf p , can be evaluated from Eq.~19! to
give

xf p5~ 1̂2M̂ !21b. ~20!

Thus we must determined(d13) scalar values~the d2

components of the matrixM̂ and the threed-dimensional
vectorsb, v, andw) in order to know the linearized system
dynamics in the neighborhood of the desired fixed point of
the Poincare´ section and the position of the fixed point. Con-
structing a (d13)-dimensional column vector ofxn , 1,
dpn21, dpn , and ad3(d13)-dimensional matrix ofM̂ , b,
v, w, Eq. ~19! can be written as

@M̂ :b:v:w#F xn
1

dpn21

dpn

G5@xn11#. ~21!

To implement the control, the system dynamics described by
M , b, v, andw must be determined. The adaptive algorithm

waits for the system to have a close return, that is when the
values ofxn11 andxn are close to each other. For each close
return, the current values ofxn , dpn21, dpn , xn11 are re-
corded. Using a collection of such close returns, Eq.~21! can
be expanded to

@M̂ :b:v:w#F xn . . . xk
1 1

dpn21 dpk21

dpn . . . dpk

G5F xn11
T

A

xk11
T

G T

. ~22!

The second matrix henceforth will be referred to as the learn-
ing matrix. This system of linear algebraic equations can be
solved uniquely if (d13) close returns are observed. In gen-
eral, we collectN.(d13) incidents and use singular value
decomposition~SVD! to obtain a linear least squares fit to
find the best values for the elements ofM̂ and vectorsxf ,
v, andw. This will improve the determination of these values
in the presence of noise. To allow for system drift, we erase

the oldest close-return data (dxi , 1, dpi21, dpi , dxi11)
from Eq. ~22! and replace it with the most current close-
return data. This ensures adaptability in the presence of sys-
tem drift.

In order to simultaneously apply the above adaptive learn-
ing and control procedure it is essential to add a small
amount of random noise to the control signal. Without this
noise, the controlled system would be constrained to a hy-
persurface given by control equation~10!, which is a sub-
space of the linearized system dynamics, Eq.~4!. However,
while applying control we need to simultaneously update the
coefficients of Eq.~4!. When the system is tightly controlled,
it is constrained on a projectiondxi1150, and does not ex-
ploit the full dimensionality of Eq.~4!. Therefore, it becomes
impossible to extract complete information about the linear-
ized system dynamics, given by the coefficients (M̂ ,w,v) of
Eq. ~4!, from successive controlled iterations. Stated in an-
other way, the learning matrix in Eq.~22! matrix becomes
singular, since the rows satisfy a linear dependency implied
by the control equation~11!. This can be resolved by adding
small random noise to the control signaldpn , such that the
system is still controlled well enough to stay in the vicinity
of the fixed point, yet successive iterations do not perfectly
satisfy Eq.~11!. The randomness of the additional control
component guarantees that the system probes the full dimen-
sionality of Eq.~4! and removes the singularity in the learn-
ing matrix allowing the determination of the system dynam-
ics while applying control.

IV. SIMULATION: CONTROL OF THE HYPERCHAOTIC
RÖSSLER SYSTEM

The first simple example of a system possessing an attrac-
tor with more than one unstable direction~hyperchaos! was
provided by Ro¨ssler @18# by adding a fourth variable to a
simple three-variable model of a chemical reaction scheme.
The hyperchaotic Ro¨ssler system described by

ẋ52y2z,

ẏ5x1.25y1w,

~23!

ż5b1xz,

ẇ5~20.51p!z1.05w,

has an attractor with two positive Lyapunov exponents for a
range of the bifurcation parameterb. Rössler originally took
b53 andp50 where we find the Lyapunov exponents of
the attractor to be about~0.160, 0.0275, 0.000,230.3! bits/
unit-time using the Wolfet al. @19,20# algorithm. The hyper-
chaotic attractor contains a period-two UPO at these param-
eter values ~see Fig. 1!. This orbit has two unstable
Lyapunov multipliers with the largest one greater than 5. Our
attempts to apply control on this UPO directly were not suc-
cessful because the system seldom came close enough to the
orbit and the time required to determine the linearized dy-
namics in the neighborhood of the orbit was too long. How-
ever, forb513, the period-two orbit is stable. Thus, the dy-
namics are easily obtained forb513 and then we use the
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adaptive algorithm to maintain the stability of the orbit while
slowly taking the system to the region aroundb53 where
the system is hyperchaotic.

To simulate an experimental situation, we consider only a
single scalar signaly(t) available for measurement and use
parameterp for control while system drift is simulated by
varying parameterb. The time-delay coordinate vectorx is
constructed fromy(t) according to Eq.~2! wheretn indicates
the time wheny(t) goes through a minimum. We found that
an embedding dimension of two was optimal for the orbit
shown as the solid line in Fig. 1. We were unable to control
using an only one-dimensional embedding. Control was pos-
sible ford.2 but more difficult than ford52. This can be
explained by noting that the Lyapunov spectra contains two
positive exponents, which shows that the unstable manifold
is two-dimensional. We chose an orbit that completes two
oscillations per cycle and we chose to take each minimum of
y(t) as data; placing our Poincare´ section at the smaller of
the two minima. The embedding vector in this particular case
reduces to

xn5S y~ tn
1!

y~ tn
2!

D , ~24!

where (tn
1) and (tn

2) indicate thenth timey(t) goes through
the first and the second minima, respectively. Note that the
delay time t used in this case is determined by the time
between successive minima in the control orbit and hence,
t will adapt automatically along with the orbit.

To be able to control a particular orbit of the system, the
orbit must first be identified and then the control weights
must be determined. In the case of a low-dimensional sys-
tem, like the model of a thermal pulsed combustor@17#, this
was done by simply waiting for close returns in the Poincare´
map to identify a period-one orbit and determine the control
parameters. But the Ro¨ssler system very seldom comes close
to the orbit which we choose to control. Therefore the strat-
egy of waiting for close returns in the return map is imprac-
tical.

In a situation like this tracking becomes an important is-
sue. We start the system for the parameter value where the
appropriate low-period orbit is naturally stable. Since the
system will be always in the neighborhood of this orbit, find-
ing the control weights by estimating the linearized dynam-
ics can be done in a few iterations. Our aim is to control the
chosen orbit when the parameter setting is in the chaotic
regime. This is done by slowly changing a parameter to
reach chaotic region while adapting the control parameters to
this change without losing control. Our adaptive learning
strategy simultaneously applies control signal and uses the
system response to reestimate the system dynamics and de-
termine the control weights.

We found that the period-two orbit is stable when
Rössler’s parameterb513 ~see Fig. 2!. Thus, we start with
b513 and apply small random control parameter changes
dpn to cause the system to sample the region of state space
near the desired orbit~which is now stable! and use the adap-
tive control algorithm to learn about the system dynamics.
Then we implement control and slowly decreaseb well be-
yond the value where the period two orbit becomes unstable.
The two-dimensional recursive control algorithm is able to
stabilize the orbit over a wide range ofb as shown in Fig. 2.
Continuous learning through updating of the learning matrix
ensures the adaptability of the control to the drift of the sys-
tem parameterb.

In Fig. 3 at b58 we discontinue learning and hold the
control parameter of Eq.~11!, k1, xf p , and R1 fixed. At
i5100 we release control and the system goes chaotic. Then,
at iterationi5200, we switch control on again. At this value
of b, the system comes sufficiently close to the fixed point
that control can be reestablished after about 150 iterations.
However, asb becomes smaller the orbit becomes more and
more unstable and the region of the attractor containing the
orbit is visited less often.

To confirm the estimation of the system dynamics by our
control algorithm, we independently perform a stability
analysis of the particular period-two orbit. Using real phase

FIG. 1. A projection of the hyperchaotic attractor with embed-
ded period-two orbit into (x,y,z) space for the Ro¨ssler system with
b53 andp50.

FIG. 2. Controlling and tracking the period-two orbit from
b513 tob52.2. The minima ofy(t) are plotted versusb. Results
of two runs, one with control and learning on, and one with control
off, are superimposed.
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space coordinates (x,z,w), we take the three-dimensional
Poincare´ section at the minima ofy(t). From this three-
dimensional Poincare´ map, we numerically calculate the
Jacobian around the period-two fixed point by taking differ-
ences for neighboring points. We keep track of the fixed
point using Newton’s method, while drifting the system
through the parameter space well below the point where the
orbit becomes unstable.

The eigenvalues of the 333 Jacobian matrix indicate the
stability of the orbit. One of the eigenvalues was found to be
almost zero. The other two are complex conjugates of each
other for b between 13 and 4.05, and become real for
b,4.05.

By comparing the eigenvalues of the matrixM̂ with the
eigenvalues found for the Poincare´ map in the true phase
space, we can judge the quality of the system dynamics de-
termined by the learning-control algorithm. Such a compari-
son is shown in Fig. 4. For integer values of the parameter
b, we stop drifting, but continue learningM̂ with control and
noise on. The triangles in Fig. 4 depict the modulus of the
eigenvalues ofM̂ , averaged over around 100 learning cycles.
Agreement is very good with the continuous curve that
shows the modulus of the eigenvalues~the two which have
modulus greater than one! of the Jacobian of the Poincare´
map in the true phase space calculated while following the
fixed point using Newton’s method as explained above. Note
that the largest Lyapunov multiplier, which is the largest
eigenvalue magnitude, approaches 10 as the parameterb ap-
proaches 1.

The quality of the determination of system dynamics by
the learning algorithm depends on the drift rate. The steady
drift of a system parameter induces a small steady translation
of the state space variables of the system indicating the slow
change in the position of the fixed point. This causes the
matrix M̂ that is obtained while drifting to have the tendency
for one of its eigenvalues to move toward one and an asso-

ciated distortion of the other eigenvalue. For higher drift
rates, this effect becomes more pronounced and if the drift
rate is too high the closed loop system is unable to maintain
control and learn at the same time.

Figure 5 shows the effect of drift on the eigenvalues of
M̂ found by the learning algorithm. We first start the con-
trolled system atb59 and then we initiate the drift. For drift
step sizesdb51023 and 1024 per cycle, we plot the eigen-
values ofM̂ obtained at each step by the learning-control

FIG. 3. The controlled Ro¨ssler system forb58. After 100
cycles, control is turned off. The system falls off the period-two
orbit into a chaotic state. At 200 iterations control is turned back on.
The control recaptures the period-two orbit the first time the system
happens to fall inside the control window, given by the maximum
allowed control shiftdpm . Throughout the entire process learning
was turned off and the control weights were held constant.

FIG. 4. Stability analysis for the period-two orbit. Taking a
Poincare´ section wheny(t) goes through a minimum, we numeri-
cally calculate the eigenvalues of the linearized map around the
associated period-two fixed point using two methods. The solid line
is the magnitude of the eigenvalues greater than one of the Jacobian
of the Poincare´ map in the true phase space coordinatesx,z,w.
Newton’s method is used to follow the fixed point. One eigenvalue
is near zero throughout. The other two are complex conjugates for
b between 13 and 4.05, and become real forb,4.05. The triangles
are the eigenvalues of the matrixM̂ obtained from the learning-
control algorithm using a two-dimensional delay coordinate embed-
ding as described in the text.

FIG. 5. The effect of drift on the eigenvalues ofM̂ found by the
learning-control algorithm. For a drift rate ofdb51024 per period
the eigenvalues~upper plot! stay close to the curve given by the true
state space stability analysis~thick line!. A drift rate ten times larger
causes a sudden decrease in the eigenvalues ofM̂ ~lower plot!.
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algorithm. While for the small drift rate the eigenvalues stay
close to the curve given by the stability analysis in the true
state space, increasing the drift rate by a factor of ten gives
rise to a sudden decrease of the modulus of the eigenvalues.

V. CONCLUSIONS

An automated adaptive control algorithm based on a re-
construction of the relevant linearized dynamics from time-
delay coordinates was developed for high-dimensional cha-
otic systems using a single control parameter. The algorithm
was applied in a simulation using the Ro¨ssler hyperchaotic
system with relatively large unstable Lyapunov multipliers.
Although the Poincare´ map for this system is three-
dimensional, we found a two-dimensional embedding to re-
construct the state space was sufficient to control the system.
The magnitude of the eigenvalues of the linearized map in
the two-dimensional embedding agrees very well with the
magnitudes of the unstable eigenvalues of the Jacobian ma-
trix of the Poincare´ map in the true state space. This suggests
that in a case where the stable manifold is rather stable, i.e.,
the stable Lyapunov multipliers are all near 0, it is only
necessary to use an embedding dimension equal to the di-
mension of the unstable manifold and use a control method
that directs the system to the fixed point rather than the stable
manifold. We found that it was necessary to apply small

random perturbations to the system in order to both learn the
dynamics and control the system at the same time.

Our simulation used the adaptive learning algorithm to
stabilize an orbit with two unstable directions. The method is
designed to be applicable when more than two unstable di-
rections are present. The difficulties encountered in practical
applications will no doubt increase with the number of un-
stable directions and it remains for future research to deter-
mine the limits and robustness of the algorithm under such
conditions. In any case, the simultaneous learning and con-
trol capability is likely to be important in any future appli-
cation of this type of active feedback control to real systems
with multiple unstable directions.
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